Salt stress activation of wound-related genes in tomato plants.
نویسنده
چکیده
Plants respond to various stresses by expressing distinct sets of genes. The effects of multiple stresses on plants and their interactions are not well understood. We have discovered that salt stress causes the accumulation of proteinase inhibitors and the activation of other wound-related genes in tomato (Lycopersicon esculentum) plants. Salt stress was also found to enhance the plant's response to wounding locally and systemically. The tomato mutant (def-1), which has an impairment in the octadecanoid pathway, displayed a severe reduction in the accumulation of proteinase inhibitors under salt stress, indicating that salt stress-induced accumulation of proteinase inhibitors was jasmonic acid dependent. The analysis of salt stress in another tomato mutant, spr-1, which carries a mutation in a systemin-specific signaling component, and transgenic tomato plants that express an antisense-prosystemin cDNA, showed that prosystemin activity was not required for the salt-induced accumulation of proteinase inhibitors, but was necessary to achieve maximal levels. These results suggest that a prosystemin independent- but jasmonic acid-dependent pathway is utilized for proteinase inhibitor accumulation in response to salt stress.
منابع مشابه
Expression pattern analysis of TomPRO2 and LaPA1 genes in tomato under in vitro salt stress by Semi-quantitative RT-PCR
The expression pattern of TomPRO2 and LaPA1 genes in two tomato (Lycopersicon esculentum) cultivars named as Isfahani and Shirazi under in vitro salt stress were investigated. Four to six weeks old in vitro grown seedlings were transferred on MS medium containing 0, 80 and 160 mM NaCl and untreated plants were used as control. RNA was extracted from root and leaf and then cDNA was synthesized. ...
متن کاملWounding increases salt tolerance in tomato plants: evidence on the participation of calmodulin-like activities in cross-tolerance signalling.
Cross-tolerance is the phenomenon by which a plant resistance to a stress results in resistance to another form of stress. It has previously been shown that salt stress causes the accumulation of proteinase inhibitors and the activation of other wound-related genes in tomato plants (Solanum lycopersicum). However, very little is known about how different stresses interact with one another, and ...
متن کاملRoles of ascorbic acid on physiological, biochemical and molecular system of Lycopersicon esculentum Mill. against salt stress
Tomato is one of the important plants in the world as a food, medicine etc. it is sensitive to abiotic stresses and its crop is affected by them. Moreover, Ascorbic acid (AsA) is one of the universal of plant defence mechanism against the stresses specially salinity and drought to scavenger’s reactive oxygen species. According to global warming and scarcity of water resources, subsequently dryi...
متن کاملSystemin-dependent salinity tolerance in tomato: evidence of specific convergence of abiotic and biotic stress responses.
Plants have evolved complex mechanisms to perceive environmental cues and develop appropriate and coordinated responses to abiotic and biotic stresses. Considerable progress has been made towards a better understanding of the molecular mechanisms of plant response to a single stress. However, the existence of cross-tolerance to different stressors has proved to have great relevance in the contr...
متن کاملMolecular and biochemical protective roles of sodium nitroprusside in tomato (Lycopersicon esculentum Mill.) under salt stress
Salinity stresses act as inhibitor factors of plant growth. They can change the physiological characteristics and limit the production of crops. Sodium nitroprusside (SNP) is a stable free radical which use as a signalling molecule in plants and participates in various plant’s physiological, biochemical and molecular processes and also in plant’s responses to environmental stresses. We investig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 132 4 شماره
صفحات -
تاریخ انتشار 2003